
OPENMP 4 ASYNCHRONOUS DATA MOVEMENT WITH THE XL
FORTRAN COMPILER

DAVID APPELHANS, DAPPELH@US.IBM.COM IBM RESEARCH

INTRODUCTION
• Teton proxy application (UMT, 50K lines) has been ported to the

GPU using CUDA Fortran.
• Because of the fast NVLINK connection to system memory and

the implementation of asynchronous data movement, perfor-
mance is only reduced slightly when the data no longer fits in
GPU memory [1].

• We would like to achieve the same with OpenMP 4 offloading.

MOTIVATION

FLOPS per Data Transferred
(Offload Intensity)

Speedup

1

Expected Speedup
as a Function of Offload Intensity

Async Overlap

No Async

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

UMT Performance Scaling with Respect to Problem Size

Minsky CPU Only Minsky CPU + GPU

Problem Size per Rank (GB)

T
im

e
(n

s)
 /

U
nk

no
w

n

Data resides on GPU
(high Offload Intensity)

Data must be swapped on GPU
(low Offload Intensity)

Minimal loss of performance in CUDA implementation above be-
cause 90% of compute is overlapped by data movement.

CHALLENGES

1. Mapping deeply nested objects.

2. Fast data movement requires PINNED attribute.

3. Async movement and execution.

PINNED MEMORY

real (kind=8), allocatable , pinned :: A (:,:)

OpenMP-Pageable

CUDA-Pageable
CUDA-Pinned

7.7

8.7
30.8

Bandwidth Comparison of Data Transfer from the GPU

GB/s

Pinned is not a supported concept with OpenMP, but strongly affects
performance on current hardware.

ASYNC
CUDA Streams OMP4 nowait

• Overlap now happening in OpenMP 4 runtime, albeit prelimi-
nary status.

• Ongoing efforts in XL compiler and runtime to improve the
overlap. Functionality need identified and under development.

• OpenMP interoperability with CUDA streams would be very
helpful for incrementally porting codes and achieving high per-
formance.

HOW TO MAP DEEP OBJECTS
Need to map deeply nested data types. A simplified example of map-
ping 2 level data is

type, public :: ZoneData

integer :: nCorner ! Scalar needed on GP
real (adqt), pointer :: STotal (:,:) ! Not needed on GPU
real (adqt), pointer :: STime (:,:,:) ! Needed on GPU

end type ZoneData

type(ZoneData), allocatable :: ZData(:)

allocate (ZData(nzones))

Map the base object (ZData), then map the desired members.

!$omp target enterdata map(to:ZData)
do zone=1,nzones

!$omp target enterdata map(to:ZData(zone)%Stime)
enddo

!$omp target
do zone = 1, nzones

do c =1, ZData(zone)%nCorner
do i=1,32

ZData(zone)%STime(i,c,1) = i∗2.0
enddo

enddo
enddo
!$omp end target

do zone =1,nzones
!$omp target exitdata map(from:ZData(zone)%STime)

enddo

!$omp target exitdata map(release:ZData)

• We can safely work with %STime in the target region.

• If we tried to access %STotal, which we did not map, we would
crash the GPU silently.

REFERENCES

[1] D. Appelhans and B. Walkup. Leveraging nvlink and asynchronous data
transfer to scale beyond the memory capacity of gpus. ScalA Workshop
Proceedings, In Preparation 2017.

* Work displayed in this poster was done as part of the CORAL CoE contract.

CONCLUSIONS

• Asynchronous data movement combined with the NVLINK
CPU to GPU connnection allows a new class of problems to be
accelerated on GPUs.

• Achieving this with OpenMP 4 requires overlapping data map-
ping with execution of a target region. Depends and nowait
clauses are expected to help with this, but require OpenMP only
approach.

• OpenMP 4 interoperability with CUDA streams would help us-
ability of OpenMP.

• Portability does not have to be an OpenMP 4 only approach.

• If 9 out of 10 kernels are ported using a directive approach, writ-
ing one kernel using a hardware specific language is realistic to
maintain, and a viable path to achieving high performance.

